
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

Performance analysis and middleware assisted
adaptation for quantum chemistry computations
Lakshminarasimhan Seshagiri
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Seshagiri, Lakshminarasimhan, "Performance analysis and middleware assisted adaptation for quantum chemistry computations"
(2009). Graduate Theses and Dissertations. 11080.
https://lib.dr.iastate.edu/etd/11080

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11080&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F11080&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11080&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11080&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F11080&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F11080&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F11080&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/11080?utm_source=lib.dr.iastate.edu%2Fetd%2F11080&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Performance analysis and middleware assisted

adaptation for quantum chemistry computations

by

Lakshminarasimhan Seshagiri

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Masha Sosonkina, Co-major Professor

Zhao Zhang, Co-major Professor
Mark Gordon

Iowa State University

Ames, Iowa

2009

Copyright c© Lakshminarasimhan Seshagiri, 2009. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my family without whose support I would not have

been able to complete this work. I would also like to thank my friends for their help during

the writing of this work.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGEMENTS . vii

ABSTRACT . viii

CHAPTER 1. OVERVIEW . 1

1.1 Introduction to Quantum Chemistry . 1

1.2 Related Work . 2

1.3 Thesis Layout . 3

CHAPTER 2. APPLICATION AND ADAPTATION STRATEGY INTRO-

DUCTION . 4

2.1 GAMESS . 4

2.2 NICAN Middleware Library . 5

2.3 Adapatation using NICAN . 7

CHAPTER 3. INITIAL PERFORMANCE MEASUREMENTS 10

3.1 Methodology . 10

3.2 Application Workload . 12

3.3 Architectures . 13

3.4 Tools . 14

3.5 Performance Results and Analysis . 16

CHAPTER 4. DATABASE ASSISTED ADAPTATION AND RESULTS . 24

4.1 Adaptation Architecture . 24

www.manaraa.com

iv

4.2 Adapatation Strategy . 25

4.3 Database Framework Adaptation Results . 28

4.4 Database Framework Scalability Analysis . 30

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 34

APPENDIX A. ADDITIONAL MATERIAL 37

BIBLIOGRAPHY . 41

www.manaraa.com

v

LIST OF TABLES

Table 4.1 AT MP0 Conventional on Solaris . 32

Table 4.2 AT MP0 Direct on Solaris . 32

Table 4.3 AT MP0 Conventional on Franklin . 33

Table 4.4 AT MP0 Direct on Franklin . 33

Table 4.5 AT MP0 Conventional on Borges . 33

Table 4.6 AT MP0 Direct on Borges . 33

www.manaraa.com

vi

LIST OF FIGURES

Figure 2.1 NICAN layout . 6

Figure 2.2 GAMESS-NICAN Integration Model 8

Figure 3.1 Hiro Inputs . 13

Figure 3.2 (a)np-dimer conventional molecule results on Franklin (b)np-dimer di-

rect molecule results on Franklin . 17

Figure 3.3 (a)np-dimer conventional molecule results on Borges (b)np-dimer direct

molecule results on Borges . 18

Figure 3.4 (a)np-dimer MP0 conventional molecule results on Niagara (b)np-dimer

MP0 direct molecule results on Niagara 19

Figure 3.5 (a)np-dimer MP2 conventional molecule results on Niagara (b)np-dimer

MP2 direct molecule results on Niagara 20

Figure 3.6 (a)C60 conventional molecule results on Franklin (b)C60 direct molecule

results on Franklin . 21

Figure 3.7 (a)C60 conventional molecule results on Borges (b)C60 direct molecule

results on Borges . 22

3.8 (a)C60 conventional molecule results on Niagara (b)C60 direct molecule

results on Niagara . 23

Figure 4.1 Database Adaptation Architecture . 24

Figure 4.2 Database Connection Architecture . 26

Figure 4.3 Database Adaptation Results . 29

Figure 4.4 Database Adaptation Results with host configuration modification . . 30

www.manaraa.com

vii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis. First and foremost, Dr.

Masha Sosonkina for giving me this opportunity to work at Ames Lab and for her guidance,

patience and support throughout this research. I would like to thank my committee members

Dr. Zhao Zhang and Dr. Mark Gordon for their guidance and contributions to this work. I

am thankful to Dr.Zhang’s for his guidance throughout my graduate study. Special thanks

to Dr.Meng-Shiou Wu, for his immense help in my research and without whose guidance this

work would have been incomplete. I would also like to thank Dr.Mike Schimdt for his patience

in explaining quantum chemistry and GAMESS computations to me.

www.manaraa.com

viii

ABSTRACT

Quantum chemistry applications such as General Atomic and Molecular Electronic Struc-

ture System(GAMESS) that can execute on a complex peta-scale parallel computing envi-

ronment have a large number of input parameters that affect the overall performance. The

application characteristics vary according to the input parameters. This is due to the differ-

ence in the usage of resources like network bandwidth, I/O and main memory according to

the input parameters. Effective execution of applications in a parallel computing environment

that share such resources require some sort of adaptive mechanism to enable efficient usage

of these resources. The adaptation adjusts the most computationally intensive part of the

application thus leading to sizable gains. General Atomic and Molecular Electronic Struc-

ture System (GAMESS), used for ab-initio molecular quantum chemistry calculations, utilizes

NICAN (Network Information Conveyer and Application Notification) for dynamically making

adaptations so as to improve the application performance in heavy load conditions. The adap-

tation mechanism has the ability to modify the application execution in a very simplistic yet

effective manner. In this work, we have explored methods to expand the structure of NICAN

in order to include other input parameters based on which the application performance can be

controlled. The application performance has been analyzed on different architectures to otain

fine grained performance data and a tuning strategy has been identified. A generic database

framework has been incorporated in the existing NICAN mechanism.

www.manaraa.com

1

CHAPTER 1. OVERVIEW

1.1 Introduction to Quantum Chemistry

Chemistry is the science dealing with construction, transformation and properties of molecules.

Theoretical chemistry is the subfield where mathematical methods are combined with funda-

mental laws of physics to study processes of chemical relevance (6). For a given set of nuclei and

electrons, theoretical chemistry can attempt to calculate different molecular properties such

as the geometry of the nuclei and their relative energies. Theoretical chemistry or quantum

chemistry is based on the simplified time-independent Schrödinger equation:

HΨ = EΨ

where H is the Hamiltonian operator, Ψ is a set of wave-functions and E is the total en-

ergy of the system. The methods aimed at solving the electronic Schrödinger equation are

called as “Electronic Structure Calculations”. These equations can be solved either by using

semi-empirical models or by using ab initio methods. Ab initio methods iteratively generate

approximate solutions without reference to experimental data. The Hartee-Fock equations can

be derived from the above equation. The HF model is a branching point for getting further

approximations or for getting more accurate treatments. SCF or Self Consistent Field orbitals

are a set of functions that provide a solution to the HF model. In large basis sets (A basis set is

a set of functions used to create the molecular orbitals), the SCF method requires the usage of

computational resources which increases as the number of basis functions to the fourth power.

Thus the scaling is of the order N4 where N is the number of basis functions describing the

atom. This scaling can be smaller in actual calculations. (as given in (6))

www.manaraa.com

2

GAMESS is only one of the applications used by chemists worldwide to perform ab initio

calculations. MOLPRO, NWChem and MPQC are other packages that are used for performing

ab initio calculations. MOLPRO (27) is a package of ab initio programs for electronic structure

calculations. NWChem (9) is written in Fortran 77 and uses Global Arrays on top of the

ARMCI (Aggregate Remote Memory Copy) library (14) for parallel communications. MPQC

(7) or the Massively Parallel Quantum Chemistry program is another computational chemistry

package that is written in C++ programming language. It uses MPI as its communication

mechanism. We have performed this research on GAMESS and hence we have provided an

introduction to GAMESS in the subsequent chapters.

1.2 Related Work

There are many different approaches to tuning high performance chemistry applications

like compiler based optimizations, performance modeling and adaptive algorithms. Dongarra

and Eijkhout (2) talk about Self-adapting Numerical Software systems that consist of a frame-

work of a database assisted decision making component, a Network Scheduler and underlying

Adaptable libraries in order to automatically pick the best software/hardware combination for

High Performance Computing. Liu and Parashar (5) provide self-managing high performance

simulations based on the Common Component Architecture (CCA). Tapus et al. (24) talk

about a framework called Active Harmony that allows runtime switching of algorithms and

tuning of library and application parameters. Vuduc et al. (32) focus on searching the imple-

mentation space using heuristic performance modeling and empirical evaluation. Concurrently,

Li et al. (12) have described a component based method to provide easy accesses to different

scientific computing applications. This work enables CQoS(Computation Quality of Service)

through a generic database component that interacts with different chemistry components and

a classifier to provide an adaptive mechanism that achieves better performance than any trial

and error approach. Ustemirov et al. use (29) a middleware tool NICAN to perform this

adaptation in GAMESS. It takes advantage of the fact that the SCF process is iterative in

nature and the two implementations can be interchanged. NICAN helps to decouple the ap-

www.manaraa.com

3

plication from having to make any adaptation decisions during the execution. The application

is responsible only for the invocation of the adaptation handlers. The adaptations are handled

by a control port that is a part of the NICAN tool. The NICAN adaptation process and its

results for SMP clusters is explained in detail in (29). Taylor et al. (25) have created a per-

formance database for distributed scientific applications. This relational database allows for

recording the performance data, system features and application details that help in analyzing

the performance of scientific applications. However, this database can only be used as a means

for creating performance models and predicting the performance of an application on different

systems. We have not only created a performance database for performance analysis but also

extended the NICAN functionality to incorporate the tuning strategy devised in this research.

1.3 Thesis Layout

The thesis has been organized as follows. Chapter 2 gives background information on

GAMESS, NICAN, adaptation using NICAN and the necessity for expanding the reach of the

existing adaptation strategy. In Chapter 3, we present the performance analysis of GAMESS

on different architectures and the usage of this performance data to develop an adaptation

strategy. Chapter 4 presents the adaptation strategy and its results. Finally in Chapter 5, we

summarize our research and the future direction that this research can take.

www.manaraa.com

4

CHAPTER 2. APPLICATION AND ADAPTATION STRATEGY

INTRODUCTION

2.1 GAMESS

Computational chemistry applications such as GAMESS (16) are widely used to per-

form ab-initio molecular quantum chemistry calculations. These calculations include a wide

range of Hartree-Fock (HF) wave function calculations such as RHF(Restricted Hartree-Fock),

ROHF(Restricted open shell Hartree-Fock) , UHF(Unrestricted Hartree Fock), GVB(Generalized

valence bond wavefunction), MCSF(Multiconfigurational SCF wavefunction). The capabilities

of GAMESS has been described in detail in the appendix. GAMESS computations can be run

in parallel mode on HPC environments to utilize distributed resources such as main memory

and disk storage. GAMESS uses the Distributed Data Interface(DDI) server model to utilize

the shared memory on Symmetric Multiprocessor (SMP) nodes. Such calculations are not

only complex but also have high computational requirements. Using the Self Consistent Field

(SCF) method, GAMESS iteratively approximates solution to the Schrödinger equation that

describes the basic structure of atoms and molecules. The SCF method has two implementa-

tions, direct and conventional, which differ from each other in the handling of the two-electron

(2-e) integrals. In the conventional SCF method, the 2-e integrals are calculated once at the

beginning of the SCF process and stored in a file on disk for subsequent iterations. This could

prove to be resource intensive in terms of disk space and file systems requirements on certain

systems. In the direct SCF method, the 2-e integrals are recalculated for each iteration and

it’s a computationally intensive process.

GAMESS calculations utilize distributed resources like memory and disk storage; the HF

www.manaraa.com

5

wave function solution also depends on a lot of other factors like the wave function solution

method, the input molecule and basis set. The numerous complex computations involved in

the calculations of HF wave function solution and the amount of system resources affect appli-

cation performance. Each quantum chemistry application is characterized by different input

parameters and the execution performance is also dependent on the underlying hardware. For

example, the current computer architectures are moving towards many-core and this will likely

affect the application input parameter combination for best possible performance. In a dy-

namic execution environment, where different applications are running at the same time, the

ability of an application to adapt itself to the varying system conditions is very important.

Such a tuning capability can be designed for an application, but this requires that the perfor-

mance data and the application specific metadata is first collected and analyzed. Conducting

performance analysis is not easy task due to a large set of system and application parameters

than can affect the overall performance. Huge amounts of performance data with proper gran-

ularity needs to be collected for a large number of molecules on different architectures in order

to discern the performance trends. By analyzing these data, we can acquire more in-depth

understanding of how different architectures affect performance of GAMESS computations,

thus helping us in exploring tuning strategies for complex quantum chemistry computations.

2.2 NICAN Middleware Library

Network Information Conveyer and Application Notification or NICAN (22) is a framework

that is used to provide methods for applications to adapt their utilization of computational

resources based on various conditions. NICAN has been successfully integrated with several

applications to aid their execution in a distributed environment. NICAN was used to monitor

the network bandwidth, analyze the collected data and notify the network benchmarking tool

NetPIPE (1) by Gan Chen in his Master’s thesis. Similarly, NICAN was integrated with

Parallel Algebraic Multilevel Solver (pARMS) by Sosonkina and Kulkarni (11), where NICAN

helps pARMS to manage changes in network conditions. Nurzhan Ustemirov, in his M.S,

www.manaraa.com

6

thesis has integrated NICAN with GAMESS and created an adaptation infrastructure in order

to improve the application performance under heavy system load (29). We have augmented

Nurzhan’s work with a database framework and this has been described in the Chapter 4.

Figure 2.1 NICAN layout

NICAN provides modules to monitor various attributes of the environment in which the

application is operating. NICAN is unique in the sense that not only does it provide a method

of monitoring specific system and application characteristics; it also provides a mechanism

for the computing path of applications to be modified when a specific trigger condition is

reached. The application and NICAN communicate with each other regarding the resources

that needs to be monitored and adapted. This communication is carried out using a regis-

ter/notify paradigm. The application is responsible only for starting the NICAN library that

invokes the user-defined modules used for application/system monitoring. NICAN uses an

application handler provided by the application to enable application adaptations. All the

modules are dynamic libraries that can be loaded into NICAN. The trigger conditions for the

characteristics being monitored can be modified by the user through an input file.

www.manaraa.com

7

2.3 Adapatation using NICAN

The adaptation in GAMESS using NICAN was designed for SMP (Symmetric Multi Pro-

cessor) clusters in order to improve GAMESS performance by Nurzhan Ustemirov (29). The

GAMESS package consists of a computational part written in Fortran and a memory man-

agement part written in C (handles DDI). Since modifying GAMESS source code could have

reduced its usability by application scientists, it was essential to use an adaptation mechanism

which would avoid making changes to the computation part of GAMESS. Instead a library

based approach with the help of NICAN was designed. The adaptation focussed on the SCF

algorithm of the GAMESS computation which is one of the most computationally intensive

parts. Selection of the correct electronic structure calculation routine has a very big effect

on the overall calculation and calculation time. The iterative nature of the SCF algorithm

allows us to switch between the conventional and direct implementations in an arbitrary SCF

iteration. The switching is carried out using the middleware tool NICAN in order to decouple

the application from having to make any adaptation decisions during the application execu-

tion. The application is responsible only for the invocation of the adaptation handlers. The

adaptations are handled by a control port that is part of the NICAN tool.

The GAMESS-NICAN integration model (Figure 2.2) includes both specific- (S) and general-

use (G) modules. GAMESS-Check specific module calculates required memory for the given

job and makes proper memory parameter adjustments to the GAMESS input file. Memory

module monitors available physical memory on the node. The disk I/O module checks the

available I/O resources by performing light weight quick benchmarking. The Daemon module

starts NICAN daemon (NcnD), if there is no other NcnD running on the node, for observ-

ing peer application jobs and for communication between distributed NICAN processes. The

daemon is self-contained and is independent from the job for which it has been started. The

daemon performs standard operations such as: read, write, delete and self-destroys if there are

no records. Each record consists of a process ID and a description to the job. Thus, the Man-

ager can record any useful information about the process executed on the node. The design

www.manaraa.com

8

of NcnD is versatile, so that the daemon module may be used for any application integrated

with middleware NICAN.

Figure 2.2 GAMESS-NICAN Integration Model

The adaptation scheme used in (29) for SMPs is summarized ahead. The adaptation scheme

consists of a static and a dynamic part. Every conventional GAMESS job gets modified to a

direct execution mode if there is a “peer” conventional GAMESS job already running in the

system. It was shown in (30) that while running concurrent scattered GAMESS jobs, a single

conventional job helps to achieve better performance. This constitutes the static adaptation

method. The dynamic adaptation is used during the iterative SCF calculations. The control

port gathers system and application information that allows it to decide on the adaptation at

runtime using the algorithm given below.

tN = Actual time taken for iteration N

tu = Upper bound for the time per iteration (taken as a arbitrary large value)

m = Average iteration time over N iterations

te0 = Estimated ideal run time for running a single iteration (obtained by NICAN after

running a GAMESS check run at startup)

∆t0 = | te0 - t0 |

if (ti > tu OR ti > m + ∆t0) then

if (SCF is conventional) then

switch to direct

www.manaraa.com

9

else if ((no peer conventional jobs) AND (enough memory)) then

switch to conventional

end if

end if

The experimental results obtained for this algorithm on a SMP have been given in (29).

It has been shown on a two processor system with I/O congestion, that the performance of

dynamically adaptive GAMESS is nearly the same as a “no-congestion” case. If the I/O

bandwidth is fully consumed, then the adaptation scheme gives two times improvement in the

execution time of GAMESS. Also, on running two simultaneous parallel GAMESS jobs on

two and four processors, a gain of 10-15 percent in the cumulative execution time is obtained

through a dynamic adaptation scheme.

www.manaraa.com

10

CHAPTER 3. INITIAL PERFORMANCE MEASUREMENTS

The NICAN dynamic adaptation discussed in Chapter 2 uses the iteration time information

collected on the fly in order to make the adaptation decision. This mechanism makes the

tuning decision depending on whether the iteration time is above a certain limit. The data

used to adapt the application is very coarse grained and here coarse grained implies that the

adaptation algorithm depends only on the wall clock time. Also, currently, the adaptations

are possible only between direct and conventional implementation of GAMESS. It has been

shown in (29) by Ustemirov et al. that this adaptation is extremely effective in improving

GAMESS application performance. However, GAMESS input parameters are very vast and

the job of formulating an adaptation algorithm for such applications is very laborious and

complex. Thus we would need to include much more fine-grained performance data to the

existing adaptation mechanism in order to derive a strategy that reflects this complexity. One

of the methods that can be used to provide this fine-grained performance data to the NICAN

library for decision-making is to obtain this data apriori and allow NICAN to access it anytime.

Thus having a database component to the existing NICAN framework would provide NICAN

with the repository of the required fine-grained performance data. This also implies that the

management of performance data is of paramount importance. The following sections give a

more detailed look at the performance analysis done for GAMESS and the development of the

adaptation strategy using the obtained performance data.

3.1 Methodology

We have observed in the works by Ustemirov, Sosonkina et al. ((29)) and Li, Kenny et

al(12) that the data used to adapt the application is very coarse grained which implies that

www.manaraa.com

11

the adaptation algorithm depends only on the wall clock time. In (29), the data regarding the

iteration time is collected on-the-fly and utilized by the middleware NICAN in order to make

the adaptation decision. This mechanism makes the tuning decision based on whether the iter-

ation time is above a certain limit. In (12), the data is collected offline and fed into a database

which helps the CCA components to make a decision on tuning the quantum chemistry ap-

plication. One of the disadvantages of using only a coarse grained performance data is that it

prevents us from gaining insight into how and why a computation performs differently on dif-

ferent architectures, and why different sets of molecules can show totally different performance

characteristics. To design tuning strategies for large parameter sets, a methodology that spans

data acquisition, performance data, metadata management and performance analysis is desired.

We proceeded to design this tuning strategy by following a collection-analysis-implementation

method. The performance data for GAMESS was collected on different architectures and using

different sets of molecules so as to understand the application performance variation. Using

this data, application performance analysis was performed and the performance trends were

identified. An adaptation strategy was formulated depending on these trends.

The first step is to choose an application workload that is diverse enough to help us to

discern between different nuances of the performance output. The molecules need to be useful

in the practical sense since that allows us to obtain data that is as close as possible to a real

life scenario. All the molecules that we have chosen are important from the point of view of

chemistry and biology. The molecules chosen in our tests include molecules representing fun-

damental aromatic systems, models used for DNA stacking and protein folding and are part

of carbon nano materials. More information regarding the input molecules has been provided

in the Application Workload subsection.

The application performance depends a lot on the hardware on which it is run. Each

hardware characteristic such as the processor type, the cache design, the memory bandwidth

and the inter-nodal connection determine the application performance to a great extent. We

www.manaraa.com

12

acquire performance data from diverse architectures in order to cover as much of the architec-

tural features as possible. The details regarding the three different architectures are given in

the Architectures Used subsection. The data collection is a very laborious process considering

that hundreds of data files have to be collected over different architectures and different input

parameter settings. The code profiler used to collect the data needs to be available and proven

to work over different operating systems and different processor architectures. One such tool

is the TAU toolkit (19), and more details regarding its usage in our data collection have been

described in the subsection Tools.

3.2 Application Workload

In our work (17), we had chosen Luciferin and Ergosterol molecules to test the GAMESS

performance on a SMP cluster and a Sun Niagara T2 processor. These molecules were chosen

because of the relative difference in their execution times on the above two architectures. In

this work, we have chosen two different sets of molecules. The first set contains 7 molecules hav-

ing varying molecular structure as shown in Figure 3.1. These molecules are Benzene(bz) and

its dimer, Naphthalene (np) and its dimer, Adenine-Thymine DNA base pair (AT), Guanine-

Cytosine DNA base pair(GC) and Buckminsterfullerene (C60). The number of basis functions

are shown in parenthesis. This diverse set of molecules allows us to see if there are any similar

characteristics in the performance data.

The second is a set of 6 Benzene molecules that are very similar in their structures. The

molecules are Picene, Pentacene, Dibenz Anthracene (J and H) , Benzo naphthacene and Benzo

triphenylene. This is advantageous since it gives us a group of molecules having a very similar

molecular structure with very little differences. We can study the performance characteristics

in very minute detail due to this property. We can also check and confirm if the performance

characteristics of one molecule can be applied to the rest of the molecules in the set.

www.manaraa.com

13

Figure 3.1 Hiro Inputs

3.3 Architectures

We used three different architectures to get the performance data. The first is an Ames

Lab SMP cluster “Borges” that consists of 4 nodes, each node having two dual-core 2.0GHZ

Xeon “Woodcrest” CPUs and 8GB of RAM (26). The nodes were interconnected with both

Gigabit Ethernet and DDR Infiniband. Each processor has a shared 4MB L2 cache. It also

contains a 32KB L1 instruction and data cache per core.

The second architecture used for testing was the Sun T2 Niagara processor (T2) (10; 23).

The T2 processor has a unique architecture that consists of 8 SPARC physical processor cores

built in a single chip and each core is capable of running 8 threads. Each of these threads

can be considered to be a processor in itself and are called as Virtual Processors (VP). Thus

a user application sees itself running on a machine of 64 processors rather than on a processor

containing 8 cores. The VPs operate at a frequency of 1167 MHz. Each of these cores con-

tains full hardware support for the eight VPs. There are two integer execution pipelines, one

floating-point pipeline and one memory pipeline inside a single core that are shared between all

the VPs. The eight VPs are divided into two groups of four each with the VPs 0-3 occupying

one group and 4-7 occupying the other group. Obviously, the hardware support inside a single

www.manaraa.com

14

core also gets divided accordingly with each group of VP having access to a single integer

pipeline and sharing the floating point and memory pipelines. Each SPARC physical core con-

tains a 16 KB, 8-way associative instruction cache (32-byte lines), 8 KB, 4-way associative data

cache (16-byte lines), 64-entry fully associative instruction TLB, and 128-entry fully associative

data TLB that are shared by the eight VPs. The eight SPARC physical cores are connected

through a crossbar to an on-chip unified 4 MB, 16-way associative L2 cache (64-byte lines)

which is banked eight ways to provide sufficient bandwidth for the eight SPARC physical cores.

The third machine used is Franklin, which is a massively parallel processing (MPP) CRAY-

XT4 system with 9,572 compute nodes provided for scientific use by NERSC(National Energy

Research Scientific Computing Center). Each node has quad processor cores, and the en-

tire system has a total of 38,128 processor cores available for scientific applications. Each of

Franklin’s compute nodes consists of a 2.3 GHz single socket quad-core AMD Opteron proces-

sor “Budapest” with a theoretical peak performance of 9.2 GFlop/sec per core (4 flops/cycle

if using SSE128 instructions). Each compute node has 8 GB of memory (2 GB of memory per

core). Each compute node is connected to a dedicated SeaStar2 router through Hypertransport

with a 3D torus topology.

3.4 Tools

The adaptation scheme used by the authors Li et al. in (12) uses wall clock time while the

adaptation mechanism described in (29) by Ustemirov et al. uses the individual SCF itera-

tion time. These methods have proven to be successful but they do not provide the complete

picture on the application behavior on different architectures. Given that we have a large

number of molecules with a large number of input parameters, it is possible that there are

many conditions where the adaptation mechanism does not provide the desired performance

improvement. To explore adaptation mechanisms to handle complex scenarios, we need to

profile the application, obtain performance data for a wide range of test parameters and then

www.manaraa.com

15

analyze the obtained data. For any scientific application, the runtime can be represented as a

sum of the time spent by the application in computing the required data, the time spent by

different threads of the program communicating with each other and the time spent by the

program in moving the data back and forth between the disk and the memory (the time spent

in I/O). These three components usually provide a good insight as to where the application is

getting slowed down during its execution and can be obtained using profiling tools. This led us

to use the TAU (19) (Tuning and Analysis Utility) toolkit, which is a popular multi-level and

multi-user source code profiler and instrumentor. Since TAU can extract metadata such as the

application and system characteristics to the granularity required by us in these experiments,

it is extremely useful in our work.

TAU is a program and performance tool framework that provides a suite of static and dy-

namic tools for parallel Fortran, C++, C, Java and Python applications.The TAU framework

can be divided into a portable profiling package and a code analysis package. The profiling

package model maintains performance data for each thread context, and node in use by a

parallel, multi-threaded application. TAU’s profile analysis procedures generate useful infor-

mation from the profile data collected. This data includes exclusive and inclusive time spent

in each function with nanosecond resolution. Other data such as the number of times each

function was called, number of profiled functions invoked by each function, and mean inclusive

time per call. Time information can also be displayed relative to nodes, contexts, and threads.

Instead of time, hardware performance data can be shown. Also, user-level profiling is pos-

sible. The TAU code analysis package contains static analysis tools based on PDT (19) , a

Fortran and C/C++ code analysis system. These tools support sophisticated views of program

structure, incorporating the latest C++ language features such as templates, namespaces, and

exceptions. Currently, the code analysis systems have been used to analyze C++ source to

automatically generate TAU profiling instrumentation.

GAMESS was instrumented and profiled on all the three architectures. It is also important

www.manaraa.com

16

to note that usage of the TAU profiler slows down the application considerably. In order to

overcome this issue, the profiler was operated on functions that can be broadly classified as

ones which provide communication, IO and computation. The profiler output contained data

for each of these functions invoked by GAMESS. We wrote a separate program in C that

collated the profiled data for each of these categories and gave a final value for the total time

spent on communication, IO or computation.

3.5 Performance Results and Analysis

The performance data was collected for different combinations of the processors and GAMESS

processes. We concentrated on 4 different input combinations. These were MP0 (Hessian),

MP2 (Many body perturbation theory) computations using direct and conventional executions.

It is not possible to represent performance data for all the 13 molecules here. Hence the per-

formance data have been shown for the np-dimer and C60 molecules since they allow us to

showcase the important observations leading to the tuning mechanism. There were a couple

of failures, which we would like to note here. One recurring theme that we found out was that

the C60 molecule failed every time we used the MP2 “electron correlation” calculation due

to its high memory requirement. The picene molecule (part of the second set of 6 benzene

molecules) failed on the Niagara machine only when running the TAU instrumented code. We

have observed that the failure could be due to TAU invariably changing some variable in case

of picene. Let us now look at all the observations from the results that were obtained. The

np-dimer results have been shown in Figures 3.2, 3.3, 3.4 and 3.5. The C60 results have been

shown in 3.6, 3.7 and 3.8. The figures are calibrated with respect to the combination of the

number of processors per node and the input type (MP0 or MP2). For example, “2x4” im-

plies that GAMESS application data has been collected with the job executing on 2 Nodes,

running 4 GAMESS processes each. It is important to remember that on Franklin and Borges,

we cannot run more than 4 GAMESS processes per node while on the Niagara machine, we

can run 8 processes per core. In case of the Niagara machine, “2X4” implies 2 cores running

www.manaraa.com

17

4 GAMESS processes each.

0 

50 

100 

150 

200 

250 

300 

350 

400 

mp
0_
2X
4 

mp
0_
4X
2 

mp
0_
8X
1 

mp
0_
4X
4 

mp
0_
8X
2 

mp
0_
16
X1
 

mp
0_
8X
4 

mp
0_
16
X2
 

mp
2_
2X
4 

mp
2_
4X
2 

mp
2_
8X
1 

mp
2_
4X
4 

mp
2_
8X
2 

mp
2_
16
X1
 

mp
2_
8X
4 

Ti
m
e 

Input Combination 

np‐dimer Conventional Franklin 

Comptn Time 

IO Time 

Comm TIme 

(a)

0 

50 

100 

150 

200 

250 

300 

350 

400 

mp
0_
2X
4 

mp
0_
4X
2 

mp
0_
8X
1 

mp
0_
4X
4 

mp
0_
8X
2 

mp
0_
16
X1
 

mp
0_
8X
4 

mp
0_
16
X2
 

mp
2_
2X
4 

mp
2_
4X
2 

mp
2_
8X
1 

mp
2_
4X
4 

mp
2_
8X
2 

mp
2_
16
X1
 

mp
2_
8X
4 

Ti
m
e 

Input Combination 

np‐dimer Direct Franklin 

Comptn Time 

IO Time 

Comm Time 

(b)

Figure 3.2 (a)np-dimer conventional molecule results on Franklin
(b)np-dimer direct molecule results on Franklin

From the results shown in Figures 3.2, 3.3, 3.4 and 3.5, we can clearly see that the execu-

tion time for the conventional implementation is different than the direct implementation on all

the three architectures for the np-dimer molecule. This difference exists for all the molecules

tested in the course of these experiments. For most molecules, we found that the conventional

implementation is faster but for larger molecules like C60 and Ergosterol (As shown in (17)),

the direct implementation is faster. This difference is exploited in the existing adaptive mech-

anism implemented through NICAN discussed by Ustemirov et al. in (29). It was established

in this paper that given a high I/O usage on a system, the conventional method slows down

considerably and switching to the direct implementation using NICAN middleware ensures

better GAMESS performance.

From Figures 3.2, 3.3, 3.4 and 3.5, it’s clear that on all the three architectures, the total

www.manaraa.com

18

0 

200 

400 

600 

800 

1000 

1200 

mp
0_
1X
2 

mp
0_
2X
1 

mp
0_
1X
4 

mp
0_
2X
2 

mp
0_
4X
1 

mp
0_
2X
4 

mp
0_
4X
2 

mp
2_
1X
2 

mp
2_
2X
1 

mp
2_
1X
4 

mp
2_
2X
2 

mp
2_
2X
4 

Ti
m
e 

Input Combination 

np‐dimer Conventional Borges 

Comptn Time 

IO Time 

Comm Time 

(a)

0 

500 

1000 

1500 

2000 

2500 

mp
0_
1X
2 

mp
0_
2X
1 

mp
0_
1X
4 

mp
0_
2X
2 

mp
0_
4X
1 

mp
0_
2X
4 

mp
0_
4X
2 

mp
2_
1X
2 

mp
2_
2X
1 

mp
2_
1X
4 

mp
2_
2X
2 

mp
2_
2X
4 

Ti
m
e 

Input Combination 

np‐dimer Direct Borges 

Comptn Time 

IO Time 

Comm Time 

(b)

Figure 3.3 (a)np-dimer conventional molecule results on Borges
(b)np-dimer direct molecule results on Borges

time taken for MP2 is at least 3 times higher than the time taken to complete MP0 calculations.

In some cases, the MP2 time is nearly 10 times as high as the time taken to complete the MP0

calculations. On comparison of the three performance timings for MP0 and MP2, we can see

that the I/O time and the computation time are fairly constant in both these implementations

but there is an increase in the communication time. This seems counter-intuitive since we

would expect MP2 calculations to increase the computation time. However, this can be ex-

plained by how the MP2 calculations are performed. In case of MP2 calculations, four matrices

are created to hold the output at each node and then these matrices are aggregated. The cost

involved in transmitting this data over the network is huge and results in an increase in the

communication time. MP2 calculations give a higher degree of accuracy over MP0. Switching

between the two cases does not actually make sense since the user has opted for MP2 in order

to obtain this accuracy. Its obvious that for such cases, other switching techniques would need

to adopted.

www.manaraa.com

19

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

mp
0_
1X
2 

mp
0_
2X
2 

mp
0_
4X
2 

mp
0_
8X
2 

mp
0_
1X
4 

mp
0_
2X
4 

mp
0_
4X
4 

mp
0_
8X
4 

mp
0_
1X
8 

mp
0_
2X
8 

mp
0_
4X
8 

mp
0_
8X
8 

Ti
m
e 

Input Combination 

np‐dimer MP0 Conventional Niagara  

Comptn Time 

IO Time 

Comm Time 

(a)

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

mp
0_
1X
2 

mp
0_
2X
2 

mp
0_
4X
2 

mp
0_
8X
2 

mp
0_
1X
4 

mp
0_
2X
4 

mp
0_
4X
4 

mp
0_
8X
4 

mp
0_
1X
8 

mp
0_
2X
8 

mp
0_
4X
8 

mp
0_
8X
8 

Ti
m
e 

Input Combination 

np‐dimer MP0 Direct Niagara 

Comptn Time 

IO Time 

Comm Time 

(b)

Figure 3.4 (a)np-dimer MP0 conventional molecule results on Niagara
(b)np-dimer MP0 direct molecule results on Niagara

In order to develop other switching techniques for the GAMESS molecules, we need to

deduce other application characteristic patterns through Figures 3.2, 3.3, 3.4 and 3.5. These

figures are for the molecule np-dimer for different combinations of nodes and processes per

node. On Franklin (figure 3.2), if we keep the total number of processes as 8, then we get

three different combinations of 2x4, 4x2 and 8x1. For the conventional MP0 method, the cost

of I/O varies from 42 seconds for 2x4 to 15 seconds for 4x2 to 12 seconds for 8x1. A similar

trend can be seen for MP2 conventional as well. If we increase the number of processes on

a single node instead of distributing amongst more nodes, it may be deduced that the I/O

contention increases. However, this observation does not work in the case of 4x2 and 4x4. The

I/O time falls when we move from 4x2 to 4x4. The I/O contention depends on the bandwidth,

the I/O channel and memory system interconnection structure, data size and the operating

system. A more thorough investigation will be needed to untangle the complex interactions

among the system resources. Consider the Figure 3.6, which shows the results for the C60

molecule on Franklin. We found that C60 successfully executes only if at least 16 processes

www.manaraa.com

20

0 

1000 

2000 

3000 

4000 

5000 

6000 

mp
2_
1X
2 

mp
2_
2X
2 

mp
2_
4X
2 

mp
2_
8X
2 

mp
2_
1X
4 

mp
2_
2X
4 

mp
2_
4X
4 

mp
2_
8X
4 

mp
2_
1X
8 

mp
2_
2X
8 

mp
2_
4X
8 

mp
2_
8X
8 

Ti
m
e 

Input Combination 

np‐dimer MP2 Conventional Niagara 

Comptn Time 

IO Time 

Comm Time 

(a)

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

mp
2_
1X
2 

mp
2_
2X
2 

mp
2_
4X
2 

mp
2_
8X
2 

mp
2_
1X
4 

mp
2_
2X
4 

mp
2_
4X
4 

mp
2_
8X
4 

mp
2_
1X
8 

mp
2_
2X
8 

mp
2_
4X
8 

mp
2_
8X
8 

Ti
m
e 

Input Combination 

np‐dimer MP2 Direct Niagara 

Comptn Time 

IO Time 

Comm Time 

(b)

Figure 3.5 (a)np-dimer MP2 conventional molecule results on Niagara
(b)np-dimer MP2 direct molecule results on Niagara

are spawned irrespective of the distribution on the nodes. Hence the C60 conventional results

have been given for 4X4, 8X2, 8X4, 16X1, 16X2 and 16X4 combinations. For the conventional

molecule, as we keep the number of processes constant and change the number of nodes on

which the job is run, we can see a general reduction in the runtimes. For the input combi-

nations of 4X4, 8X2 and 16X1, the computation time is nearly constant while the I/O and

communication time reduces. Intuitively, for better performance, we are looking at getting

more resources for the application. However, as the number of cores per node increases, the

complex interaction among system resources, gives us a more unpredictable nature of results.

This can be seen in the results for 16X1, 16X2 and 16X4. The I/O and computation time

reduce and the communication time remains fairly constant when the number of processes

increases from 1 to 2. But the communication time increases dramatically when the number

of processes on a single node is increased from 2 to 4. This trend indicates that for larger

molecules, at higher distribution of processes among nodes, there is a very good chance that

the conventional method gives rise to I/O contention or the operating system does not handle

www.manaraa.com

21

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

mp0_4X4  mp0_8X2  mp0_16X1  mp0_8X4  mp0_16X2 mp0_16X4 

Ti
m
e 

Input Combinations 

C60 Conventional Franklin 

Comptn Time 

IO Time 

Comm Time 

(a)

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

mp0_4X4  mp0_8X2  mp0_16X1  mp0_8X4  mp0_16X2 

Ti
m
e 

Input Combinations 

C60 Direct Franklin 

Comptn Time 

IO Time 

Comm Time 

(b)

Figure 3.6 (a)C60 conventional molecule results on Franklin (b)C60 direct
molecule results on Franklin

well for I/O with large data size requests. The more consistent trend that we can observe

here is that of the communication cost increasing when the number of processes on a single

node is increased. This trend can possibly be exploited in such a way that the distribution

of processes among different nodes is modified to obtain the least communication cost possible.

Referring to Figure 3.3, which indicates the results for np-dim on Borges, we can see that

for the 1x2 and 2x1 combinations, there is a big increase in the computation cost while the

communication cost reduces. This is consistent for other combinations like 1x4 and 4x1, 2x4

and 4x2 though in a lesser degree, and for these mentioned combinations in the direct imple-

mentation. This is surprising since intuitively we expect the communication cost to increase

when the processes get distributed over the network. One of the possible reasons for this could

be an issue with the shared memory and inter-nodal communications and more fine-grained

data is required for investigating this issue. The results also show good scalability on this ar-

chitecture for both direct and conventional method. The increase of the number of processors

www.manaraa.com

22

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

4500 

5000 

mp0_1X2 mp0_2X1 mp0_1X4 mp0_2X2 mp0_4X1 mp0_2X4 mp0_4X2 

Ti
m
e 

Input Combinations 

C60 Conventional Borges 

Comptn Time 

IO Time 

Comm Time 

(a)

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

mp0_1X2 mp0_2X1 mp0_1X4 mp0_2X2 mp0_4X1 mp0_2X4 mp0_4X2 

Ti
m
e 

Input Combinations 

C60 Direct Borges 

Comptn Time 

IO Time 

Comm Time 

(b)

Figure 3.7 (a)C60 conventional molecule results on Borges (b)C60 direct
molecule results on Borges

on a single node does not change any of the characteristics associated with the application.

The percentage of communication, I/O and computation times remains constant as we move

from 1x2 to 1x4 or from 2x1 to 2x2. However, the performance characteristics change when we

move from 2x2 to 2x4 or from 4x1 to 4x2, which shows that increasing the number of processes

from 4 to 8 probably caused this. Also, it is important to note that the Borges cluster might

not be as fine-tuned as Franklin since Franklin is a cluster being used by the scientific com-

munity and this could result in some adverse results being more prominent on Borges. Figure

3.7, shows that for larger molecules, the distribution of processes has a very good effect on the

performance of GAMESS.

The observations from the results for np-dimer on the Niagara machine are shown in Fig-

ures 3.4 and 3.5. We can notice that the ratio of I/O on the Solaris machine is much higher

than the ratio of I/O on the other machines for the conventional method. The Niagara machine

can be considered as a single node multi-core machine that can run multiple threads on each

www.manaraa.com

23

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

mp
0_
1X
2 

mp
0_
2X
2 

mp
0_
4X
2 

mp
0_
8X
2 

mp
0_
1X
4 

mp
0_
2X
4 

mp
0_
4X
4 

mp
0_
8X
4 

mp
0_
1X
8 

mp
0_
2X
8 

mp
0_
4X
8 

mp
0_
8X
8 

Ti
m
e 

Input Combinations 

C60 Conventional Niagara 

Comptn Time 

IO Time 

Comm Time 

(a)

0 

500 

1000 

1500 

2000 

2500 

mp
0_
1X
2 

mp
0_
2X
2 

mp
0_
4X
2 

mp
0_
8X
2 

mp
0_
1X
4 

mp
0_
2X
4 

mp
0_
4X
4 

mp
0_
8X
4 

mp
0_
1X
8 

mp
0_
2X
8 

mp
0_
4X
8 

mp
0_
8X
8 

Ti
m
e 

Input Combinations 

C60 Direct Niagara  

Comptn Time 

IO Time 

Comm Time 

(b)

Figure 3.8 (a)C60 conventional molecule results on Niagara (b)C60 direct
molecule results on Niagara

of its cores. The cache system is shared between the cores using a crossbar architecture, which

ensures that the time taken to access the cache is constant for all the cores. The memory

bandwidth gets shared among the cores. Hence for larger number of processes, there is a good

possibility of contention. As we increase the distribution of the GAMESS threads among the

cores, the time taken to complete the execution goes down. This is due to the increase in the

amount of hardware available for execution. One more observation is that the best possible

performance for a given number of threads is obtained when each GAMESS thread gets a

single core to execute. From the results in Figure 3.8, we can see that Niagara gives very good

performance when the cores are used for the direct computations. On such architectures, an

adaptation strategy can be designed which would look to distribute the number of processes to

the maximum available cores and thus improve application performance. However, we can also

see from the results that the scalability is not high enough. Even after increasing the number

of cores from 1 to 8, the performance improves by a factor of 2.

www.manaraa.com

24

CHAPTER 4. DATABASE ASSISTED ADAPTATION AND RESULTS

4.1 Adaptation Architecture

Source code  
Instrumentation 
(TAU for GAMESS) 

Data  
Collection 
(C program) 

Performance  
Database 

PostGreSQL 

Application 
Metadata 

Perf 
Data 

System 
Metadata 

Develop  
Analysis Procedures 

Scalability Analysis 

Performance Evaluation  Performance  
Analysis 

GAMESS 

NICAN 

Application 
Execution 

Figure 4.1 Database Adaptation Architecture

Figure 4.1 shows the complete architecture of the database adaptation framework. It is

important to note that the data management as well as the adaptation are considered as part of

www.manaraa.com

25

this framework. The adaptation architecture has been shown below. The architecture can be

divided into two distinct sections. One is the offline section which consists of the performance

evaluation and analysis of the application. In this section, we instrument the GAMESS code

using TAU, collect the performance data for different combinations of the application and

system parameters and store the data into a PostGreSql (3) performance database. This data

is then analyzed by separate programs to obtain such metrics like scalability on a particular

machine. The second section of the architecture is the application execution which involves

the application adaptation using the NICAN middleware tool.

4.2 Adapatation Strategy

In the tests conducted for different input combinations of the two molecule sets, we con-

centrated on combining the direct and conventional implementations with MP0 and MP2

computations for all these 13 molecules. The TAU performance tool split the wall clock time

as communication time, computation time and I/O time. This allowed us to broadly general-

ize the performance trends for the selected molecules and the input parameters. However, the

amount of data generated for these 13 molecules on the three different architectures for differ-

ent input combinations clearly showed a need for using full fledged performance scenarios in

the adaptation process. Consider an example of a single molecule. We conducted performance

tests for four different input combinations (MP0 and MP2, direct and conventional, for RHF

computation type). These tests were run on 3 different architectures. On each architecture,

we performed at least 8 different test runs for different combinations of input processors and

nodes. This gives rise to 96 different sets of performance data for only a single molecule. The

data sets would increase even further if we get the data for the other SCF implementations

like UHF and ROHF or if we modify the run type from energy to optimize, gradient, hessian

etc. Thus, the amount of data that can be generated is huge. The challenge is to ensure that

the collected data is in a format that is easily analyzed to discover the performance issues and

decide on strategies for consistent good performance. Also, all the performance data should

be stored in such a manner that any developer or user will be able to manage this data easily.

www.manaraa.com

26

Hence, it was decided that a database containing the relevant data would be integrated with

GAMESS-NICAN.

GMS2 GMS1 GMS1 
GMS2 

NODE 1  NODE 2 

M1  M2  M1  M2 

Database 
Server   Performance 

Database 

Figure 4.2 Database Connection Architecture

We chose PostGreSql database for storing the application metadata and the adaptation re-

lated data. The data to be stored in the database can be divided loosely into tables representing

the data for performance analysis and data for adaptation. The tables used for adaptation are

given in the appendix. The connection mechanism of GAMESS jobs to the database is shown

in Figure 4.2. The application connects to the database using a database daemon server (DBd)

that is started by the application. The application ensures that only a single DBd is running for

that particular machine. This is essential since we only have a single database instance for the

www.manaraa.com

27

entire machine. The architecture is similar to a client-server architecture wherein the different

application jobs running on the machine are the clients connecting to a single DBd server. The

user provides the database connection string to the application through the existing NICAN

XML file. This enables each user to connect to his own schema though the database daemon

server will be the same for all the users. The other important detail provided in the file is

the machine name. The database stores machine specific details like the cluster node names,

node configurations, available memory and other performance related details such as the best

node-processor combination. The data format of the data exchanged between the DBd and

the NICAN module is predefined. The database class provided to the NICAN module contains

all the functions required to extract the result from the database. One other advantage of

using a DBd server is that different modules of the same application job can connect to the

database at the same time. Currently, the database management is handled manually. The

data regarding each molecule on the particular machine is either inserted by the programmer

or gets inserted during runtime by the NICAN module. We intend to integrate PerfExplorer

and PerfDMF with the current setup so that we can manage the data more easily. This has

been done before by authors Li et al. in (12). Also, we can then input much more detailed

TAU data into the database for usage by the NICAN module.

The tuning strategy that we propose on the basis of the results obtained augments the ex-

isting NICAN adaptation strategy. The NICAN manager spawns a thread that connects to the

database and gets the required information. The current implementation of NICAN requires

a check run in order to get the memory requirements of the input molecule. We have offloaded

this information into the database. The amount of data being written by GAMESS into files

depends on the input parameters chosen. For example, when the gbasis value is taken as CCQ,

the amount of data written for the conventional method is very large. The external disk sizes

on clusters are normally huge. However, it is possible that in case of small clusters, the disk

size might get exceeded due to residual files. Hence, NICAN calculates the amount of space

available to store integral files and in case sufficient space is not available, the implementation

www.manaraa.com

28

can be modified to direct. For MP2 computations, we have observed that the shared memory

availability is the most important factor that determines if the job execution is successful or

not. Since, it does not make any sense to switch between MP0 and MP2, it would be useful

for the users if they are provided with the exact input memory requirements for the job to

execute successfully. NICAN compares the memory requirement and the memory requested

by the user. The job is immediately stopped if the memory requested by the user is less than

the memory required to execute the job. The correct value of DDI memory is printed in the

log file. This ensures that the job is stopped before the start of the execution instead of failure

at the MP2 calculation stage.

From the initial results obtained, we have seen the best combination to obtain the most

efficient application performance on a given architecture. Such combinations are stored in

the database for each particular operating environment. For example, on a Sun T2 Niagara

machine, the best method to obtain fastest application run time would be to distribute the

number of GAMESS processes to as many cores as possible. Obviously, this adaptation would

be possible only if there are cores or nodes (in case of Franklin and Borges) available so as to

distribute the processes. The scalability of GAMESS on the Niagara machine is not as good

as desired, but we can get a decent speed up for large molecules by increasing the number of

cores used for execution. The adaptation between conventional to direct is an existing feature

in NICAN and we have not modified the algorithm. However, the database access has been

incorporated as an easy extensibility to the NICAN features.

4.3 Database Framework Adaptation Results

The adaptation was tested on Borges using two representative molecules, AT and C60. The

database was created on Borges and the necessary data was inserted into this database. The

results have been shown in Figure 4.3. The Y-axis of the graph shows the combined execution

time for both these molecules. The X-axis of the graph represents the input node-processor

www.manaraa.com

29

combination. We can see that the performance improvement varies from around 28% to 54%.

This improvement is mainly due to offloading the idealized iteration time to the database

instead of computing it every time the adaptation has to run. The database entries in the

table Machine Combination were modified in such a way that the host configuration was not

modified in these tests.

0 

50 

100 

150 

200 

250 

1X4  2X2  4X1  2X4  4X2  4X4 

Ti
m
e(
M
in
ut
es
) 

Input Node‐Processor Combination 

DB Framework Results on Borges 

No DB Adaptation 

DB Assisted Adaptations 

Figure 4.3 Database Adaptation Results

The host configuration modification would ensure that for a specific number of processes,

the input node-processor configuration is always changed to a particular value. For example,

if the user requests 4 processes, the best performance is obtained when the job is run on 4

nodes with each node running a single process. The results for host configuration modification

are shown in Figure 4.4. We have also tested the other capabilities added to NICAN. The

GAMESS adaptation was tested when the filesystem limit was reached. The filesystem limit

was kept at 95% and the GAMESS execution was modified from conventional to direct when

this filesystem limit was reached. The NICAN library was modified to check the database for

www.manaraa.com

30

0 

50 

100 

150 

200 

250 

1X4  2X2  4X1  2X4  4X2  4X4 

Ti
m
e 
(M

in
ut
es
) 

Input Node‐Processor Combination 

DB Framework Results ‐ Host Configuration 
modification 

No DB Adaptation 

DB Assisted Adaptation 

Figure 4.4 Database Adaptation Results with host configuration modifica-
tion

MP2 memory requirements and then compare it with the memory requested by the user. The

job is appropriately terminated if the memory requirements do not match.

4.4 Database Framework Scalability Analysis

The performance data collected can be utilized for different analyses and derive a variety of

analysis results. One advantage of having a vast amount of performance data for an application

such as GAMESS is to be able to analyze the scalability of the application on different archi-

tectures and deduce the inflection point for the performance degradation or for performance

improvement. According to the Webster dictionary, Scalability is defined as the property of

being easily expanded or upgraded on demand. With respect to any computer application, we

can define it as the ability of any program to function correctly given that the application or

its context is modified in size or volume. The re-scaling can occur either in terms of the appli-

cation itself (Ability to create more threads, Ability to handle more users in case of servers)

www.manaraa.com

31

or the context in which it is operated (Increase in hardware resources, upgrade of operating

system etc). The scalability of an application also refers to the ability of the application to

take full advantage of the modification that has occurred. If the factors such as the underlying

hardware configuration and operating system parameters are the same, the performance of the

application would depend solely on the number of threads that the application runs. However,

if the number of cores or number of nodes is modified along with the application threads, the

results give an indication about the ability of the underlying hardware architecture to improve

application performance. With respect to GAMESS, the scalability analysis indicates the im-

provement in the performance of GAMESS on a particular architecture, when the number of

cores or nodes, on which the application is executed, is increased.

The scalability of GAMESS on the three architectures is calculated using a separate C

program. This program operates on the TAU results file; takes the molecule name and SCF

type as input and outputs the scalability results in tabular format. Scalability is calculated

as the inverse ratio of the total time taken by GAMESS on a given number of nodes and the

total time taken by GAMESS for a single node, when the number of GAMESS processes per

node is constant. A node can contain multiple cores and hence is capable of running multiple

processes. In case the TAU results have not been obtained for a single node, we consider the

denominator to be the minimum of the total time. The tables 4.1 , 4.2 , 4.3 , 4.4, 4.5 and 4.6

show results for the molecule AT on all the three architectures. The zero values indicate that

results were not obtained for those particular combinations. Consider the following example

to understand the scalability calculation. Table 4.3 shows the scalability of a conventional

GAMESS job on Franklin. As per our definition, the scalability while using 16 nodes and a

single process on each node, would be the inverse ratio of total time obtained by running a

single process of GAMESS on 16 nodes each and the total time obtained by running a single

process of GAMESS on a single node. Since there are no results available for the denominator,

we use the minimum time available which in this case equates to the total time required to

complete a GAMESS job on 8 nodes running a single process per node.

www.manaraa.com

32

Cores 1 2 4 8
Procs

2 1 1.06 1.06 1.05
4 1 1.17 1.24 1.25
8 1 1.35 1.59 1.67

Table 4.1 AT MP0 Conventional on Solaris

Cores 1 2 4 8
Procs

2 1 1.14 1.14 1.14
4 1 1.20 1.34 1.34
8 1 1.36 1.63 1.82

Table 4.2 AT MP0 Direct on Solaris

tN=Total run time of GAMESS on a given number of nodes.

t1=Total run time of GAMESS for a single node.

Scalability = 1
tN
t1

Consider the results shown in Tables 4.1 , 4.2 for the Niagara machine. Since the Niagara

machine consists of a single node and 8 cores, the scalability is calculated with respect to the

increase in the number of cores. We can see that as we increase the number of cores and keep

the number of processes constant, the scalability does not increase similarly. The runtimes

decrease as we increase the number of threads. However, the runtimes stabilize once the num-

ber of threads are equal to the number of cores on which they are run. Even if we increase

the number of cores, the performance remains flat. Thus the best possible combination for

running the GAMESS application would be to allocate individual threads to single cores.

The Tables 4.3 and 4.4, give the scalability results for Franklin. For the conventional run of

AT on Franklin, the scalability improves by 60% when we move from 4 nodes to 8 nodes but a

quadruple increase in the number of nodes (from 4 to 16) does not improve the performance 4

times. The scalability is only 2.2 times in this case. Also, the scalability actually reduces from

1.83 to 1.64 when we use 8 nodes to run 4 processes each instead of 4 nodes. Since AT is a

small molecule, running 32 processes increases the communication delay leading to reduction in

scalability. For the direct job execution of AT, the scalability looks good and the performance

nearly doubles when the number of nodes is doubled. The quadrupling of the nodes does not

have the same effect though it does provide a three time increase in the performance.

www.manaraa.com

33

Nodes 2 4 8 16
Procs

1 0 0 1 1.66
2 0 1 1.59 2.22
4 1 1.83 1.64 0

Table 4.3 AT MP0 Conventional on Franklin

Nodes 2 4 8 16
Procs

1 0 0 1 1.86
2 0 1 1.95 3.42
4 1 1.77 3.08 0

Table 4.4 AT MP0 Direct on Franklin

Nodes 1 2 4
Procs

1 0 1 2.24
2 1 2.26 4.67
4 1 1.95 0

Table 4.5 AT MP0 Conventional on Borges

Nodes 1 2 4
Procs

1 0 1 2.54
2 1 3.86 9.63
4 1 3.56 0

Table 4.6 AT MP0 Direct on Borges

The tables 4.5 and 4.6 indicate the performance scalability on Borges, which is an internal

cluster of Ames Lab. The doubling of the number of nodes doubles the performance for

conventional and triples it in case of direct. These tables give us a good idea about the

scalability on different machines through the usage of the total time taken by GAMESS jobs.

We could use communication time, IO time or computation time instead of total time and get

the same scalability analysis done. Also, this scalability computation may be integrated with

NICAN to provide NICAN with scalability information for either monitoring or adaptation.

www.manaraa.com

34

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Conclusions

Quantum chemistry applications such as GAMESS have numerous input parameters, which

determine their performance characteristics. Also, the architecture on which the application

is executed makes a difference in the application performance. We proposed to enhance the

adaptation strategy of GAMESS so as to encompass different parameters that affect the ap-

plication performance. We first understood the performance characteristics of GAMESS on

different architectures. We conducted performance tests for 13 different molecules on three

different architectures. MP0 and MP2 computations for direct and conventaional implementa-

tions were tested. By using the TAU tool, we split the total wall clock time as communication

time, computation time, and IO time. By analyzing these data, we arrived at a few rules which

would aid the adaptation process. The data analysis was a tedious and time consuming process

due to the volume of data generated for only 13 molecules and 4 different input combinations.

Hence usage of a performance database was mooted. The idea was to create a repository to

hold this performance data such that this database can be used for both performance analysis

and application adaptation. We have utilized a PostGreSql database to hold this data. The

obtained performance data was analyzed and a set of rudimentary and simple rules were cre-

ated to augment the existing adaptation process. A database framework was created around

NICAN so as to access the postgresql database and aid GAMESS adaptation. The perfor-

mance data is collected offline and then inserted into the database. The existing dynamic

adaptation of GAMESS has not been modified. The performance improvement obtained by

using the database framework has been shown up to 40%. A scalability analysis module has

also been created which calculates the scalability of each architecture.

www.manaraa.com

35

Future Work

1. It is not possible to store performance data and rules for all the molecules used by the

chemists. Hence, as a future work, we envision that NICAN should be able to recognize

the similarity of the given input molecule with the data available in the performance

database and then approximate the required data.

2. Application related data such as compiler options or system related data such as cache

performance data may be extracted from the application execution and stored in the

database. This can help us to refine the adaptation strategy.

3. The performance data has been collected on different architectures. Each architecture

has its unique features but they also have features which can be compared. Using the

performance data, we intend to compare different architectures and also extrapolate the

performance of GAMESS on other architectures.

4. Currently the code abstracts the underlying hardware to the level of the machine name.

This can be extended to be more generic abstractions such as the underlying hardware

architecture.

5. Currently the total runtime is being split into communication time, IO time, and com-

putation time by the TAU tool. This granularity can be further increased so that we can

get the data within a particular computational phase or even within an individual SCF

iteration.

6. The NICAN dynamic adaptation algorithm can be modified such that the algorithm uses

communication time or IO time, instead of just the iteration time for deciding on the

switching between conventional and direct.

7. The dynamic adaptation algorithm is currently in use only for the SCF iterations. MP2

has different implementations that can be switched dynamically. Also, the DFT (Density

www.manaraa.com

36

Functional Theory) implementation can be modified to use dynamic adaptations.

8. We are also concerned with the usage and management of the performance data that can

be collected for a single molecule on different machines and different input combinations.

We need to explore the usage of tools such as PerfDMF and PerfExplorer to obtain a

dimension reduction of the performance data and for database management.

9. Analysis techniques such as machine learning techniques can be employed.

www.manaraa.com

37

APPENDIX A. ADDITIONAL MATERIAL

GAMESS Capabilities

1. Calculates RHF, UHF, ROHF, GVB, or MCSCF self-consistent field molecular wave-

functions.

2. Calculates the electron correlation energy correction for these SCF wavefunctions us-

ing Density Functional Theory (DFT), Configuration Interaction (CI), Many Body Per-

turbation Theory (MP2), coupled-cluster (CC) or Equation of Motion CC (EOM-CC)

methodologies.

3. Calculates semi-empirical MNDO, AM1, or PM3 models using RHF, UHF, ROHF, or

GVB wavefunctions.

4. Calculates analytic energy gradients for any of the SCF or DFT wavefunctions, closed

or open shell MP2, or closed shell reference-based CI.

5. Optimizes molecular geometries using the energy gradient, in terms of Cartesian or in-

ternal coords.

6. Searches for saddle points (transition states) on the potential energy surface.

7. Computes the energy hessian, and thus normal modes, vibrational frequencies, and IR

intensities.

8. Obtains anharmonic vibrational frequencies and intensities (fundamentals or overtones).

9. Traces the intrinsic reaction path from a saddle point to reactants or products.

www.manaraa.com

38

10. Traces gradient extremal curves, which may lead from one stationary point such as a

minimum to another, which might be a saddle point.

11. Follows the dynamic reaction coordinate, a classical mechanics trajectory on the potential

energy surface.

12. Computes excited state energies, wavefunctions, and transition dipole moments at various

levels

(a) SCF (e.g. ROHF or MCSCF)

(b) CIS (RHF plus single excitations)

(c) much more general CI functions

(d) time dependent DFT

(e) Equation of Motion-Coupled Cluster with analytic gradients for SCF, CIS, and

GUGA CI.

13. Searches for the minimum energy crossing point between two such potential energy sur-

faces.

14. Evaluates relativistic effects, including scalar corrections, via 3rd order Douglas-Kroll

transformations. Gradients are available. spin-orbit coupling matrix elements and the

resulting spin-mixed wavefunctions.

15. Evaluates the molecular linear polarizability and the first and second order hyperpolar-

izabilities for all wavefunctions, by applying finite electric fields.

16. Evaluates both the static and frequency dependent polarizabilities for various non-linear

optical processes, by analytic means, for RHF wavefunctions.Nuclear derivatives of the

polarizabilities lead to analytic Raman and hyperRaman spectra, also for RHF.Imaginary

frequency dependent polarizabilities can also be obtained, again for RHF only.

17. Obtains localized orbitals by the Foster-Boys, Edmiston-Ruedenberg, or Pipek-Mezey

methods, with optional SCF or MP2 energy analysis of the LMOs.

www.manaraa.com

39

18. Calculates the following molecular properties:

(a) dipole, quadrupole, and octupole moments, electrostatic potential

(b) electric field and electric field gradients

(c) electron density and spin density

(d) Mulliken and Lowdin population analysis, virial theorem and energy components

(e) Stones distributed multipole analysis

19. Models solvent effects by

(a) effective fragment potentials (EFP)

(b) polarizable continuum model (PCM)

(c) surface and simulation of volume polarization for electrostatics (SS(V)PE)

(d) conductor-like screening model (COSMO)

(e) self-consistent reaction field (SCRF)

20. Performs all-electron calculations based on the Fragment Molecular Orbital (FMO) method.

21. Models the formation of aperiodic polymers with the Elongation Method.

22. When combined with the plug-in TINKER molecular mechanics program, performs

Surface IMOMM (SIMOMM) or IMOMM QM/MM type simulations. Download from

http://www.msg.ameslab.gov/GAMESS/GAMESS.html.

23. When combined with the plug-in NEO program (Nuclear Electron Orbitals), performs

quantum mechanics computations of nuclear structure. NEO’s code is included with

GAMESS source distributions, see the directory ~/gamess/qmnuc.

24. When combined with the plug-in VB2000 program, performs valence bond calculations.

See http://www.scinetec.com/~vb for more information.

25. When combined with the plug-in XMVB program, performs valence bond calculations.

Please contact Professor Wei Wu of Xiamen University for more information, weiwu@xmu.edu.cn,

and see also http://ctc.xmu.edu.cn/xmvb/index.html.

www.manaraa.com

40

26. When combined with the plug-in NBO program, performs Natural Bond Order analyses.

This program is available at http://www.chem.wisc.edu/~nbo5, for a modest license

fee.

Database Tables

1. Molecule Contains details regarding the molecule.

2. Checkrun Details Gives the information regarding the idealized iteration time.

3. Machine Details Contains information regarding the nodes in a machine.

4. Machine Combination Contains information regarding the best possible combination on

a particular machine for a given number of application processes.

5. Performance Data Contains TAU performance data for a particular molecule on a par-

ticular machine and input-processor combination.

www.manaraa.com

41

BIBLIOGRAPHY

[1] G. Chen Providing Dynamic network information to distributed applications Master’s

Thesis, University of Minnesota Duluth, May 2001.

[2] J. Dongarra and V. Eijkhout Self-adapting Numerical Software for Next Generation Ap-

plications International Journal of High Performance Computing applications (IJHPCA)

volume 17, Number 2, Pg 125-131, 2003

[3] K. Douglas and S. Douglas PostgreSQL , 2003 New Riders Publishing,Thousand Oaks,

CA, USA,

[4] J.L. Hennessy and D.A. Patterson Computer Architecture, Fourth Edition: A Quantita-

tive Approach Morgan Kaufmann Publishers Inc., 2006.

[5] H. Liu and M. Parashar Enabling self-management of component-based high-performance

scientific applications HPDC ’05: Proceedings of the High Performance Distributed Com-

puting, 2005. HPDC-14. Proceedings. 14th IEEE International Symposium Pg 59–68,

2005

[6] F. Jensen Introduction to Computational Chemistry, Wiley, Chester, UK, 1999.

[7] C.L. Janssen, I.B. Nielsen, M.L. Leininger, E.F. Valeev, J.P. Kenny, E.T. Seidl . The Mas-

sively Parallel Quantum Chemistry Program (MPQC), 3.0, Sandia National Laboratories,

Livermore, CA, USA, 2008.

www.manaraa.com

42

[8] V. Kazempour, A. Fedorova and P. Alagheband Performance Implications of Cache Affin-

ity on Multicore Processors. Euro-Par ’08: Proceedings of the 14th international Euro-Par

conference on Parallel Processing 2008,151–161, Springer-Verlag

[9] R. Kendall, E. Aprà, D. Bernholdt, E. Bylaska, M. Dupuis, G. Fann, R. Harrison, J .Ju,

J .Nichols, J. Nieplocha, T.P. Straatsma, T. Windus and A. Wong High performance

computational chemistry: An overview of NWChem a distributed parallel application In

Journal of Computer Physics Communications, June 2000, No 1-2, Pages 260-283, Volume

128

[10] P. Kongetira, K. Aingaran and K. Olukotun A 32-way Multithreaded SPARC(R) Proces-

sor. In IEEE Micro, Volume 25, Number 2, 2005, Pg 21–29.

[11] D. Kulkarni and M. Sosonkina. A framework for integrating network information into

distributed iterativesolution of sparse linear systems. High Performance Computing for

Computational Science - VECPAR 2002, 5th International Conference, Porto, Portugal,

June 26-28, 2002, Selected Papers and Invited Talks, volume 2565 of Lecture Notes in

Computer Science, pages 436–450. Springer, 2003.

[12] L. Li, J. Kenny, M.S. Wu, K. Huck, A. Gaenko, M.S. Gordon, C.L. Janssen, L.C. McInnes,

H. Mori, H.M. Netzloff, B. Norris, T.L. Windus. Adaptive Application Composition in

Quantum Chemistry Proceedings of The 5th International Conference on the Quality of

Software Architectures (QoSA 2009) February 2009

[13] R. McDougall and J. Mauro. Solaris Internals: Solaris 10 and OpenSolaris Kernel Archi-

tecture. 2nd Edition, Prentice Hall, 2006.

www.manaraa.com

43

[14] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. Panda High Performance Remote

Memory Access Communications: The ARMCI Approach. International Journal of High

Performance Computing and Applications, Vol 20(2), 233-253p, 2006.

[15] R. Olson, M.W. Schmidt, M.S. Gordon and A.Rendell Enabling the Efficient Use of SMP

Clusters: The GAMESS/DDI Model, Proceedings of the 2003 ACM/IEEE conference on

Supercomputing, p.41, November 15-21, 2003.

[16] M. Schmidt, K. Baldridge, J. Boatz, S. Elbert, M.S. Gordon, J. Jensen, S. Koseki, N.

Matsunaga, K.Nguyen, S. Su, T. Windus, M. Dupuis, J. Montgomery,Jr. General Atomic

and Molecular Electronic Structure System. Journal of Computational Chemistry, 14,

1347-1363(1993).

[17] L. Seshagiri, M. Sosonkina, Z. Zhang Electronic Structure Calculations and Adaptation

Scheme in Multi-core Computing Environments In Proceedings of 2009 International

Conference on Computational Science (ICCS-2009), Baton Rouge, Louisiana, May 25-27,

2009 Pg 3–12, Lecture Notes In Computer Science; Vol. 5544, Springer-Verlag

[18] L. Seshagiri, M.S. Wu, M. Sosonkina, Z. Zhang Exploring Tuning Strategies for Quantum

Chemistry Applications In Proceedings of 2009 International Workshop on Automatic

Performance Tuning (iWAPT-2009), Tokyo, Japan, Oct 1-2, 2009

[19] S. Shende and A. Malony The TAU parallel performance system Int. J. High-Perf.

Computing Appl., ACTS Collection special issue 20 (Summer 2006), Pg 287-331.

[20] M. Sosonkina. Adapting Distributed Scientific Applications to Run-time Network Con-

ditions. In Applied Parallel Computing, State of the Art in Scientific Computing, 7th

International Workshop, PARA 2004, Revised Selected Papers, volume 3732 of Lecture

Notes in Computer Science, pages 745–755. Springer, 2006.

www.manaraa.com

44

[21] M. Sosonkina, S. Storie. Parallel performance of an iterative method in cluster environ-

ments: an experimental study. In Proceedings of Parallel Matrix Algorithms and Applica-

tions (PMAA 2004), Marseille, October 2004.

[22] S. Storie. Aspects of Communication Subsystem Analysis for Distributed Scientific Ap-

plications. Master’s Thesis, University of Minnesota Duluth, May 2004.

[23] Sun Microsystems Inc. http://www.sun.com/processors/UltraSPARC-T2/.

[24] C. Ţăpuş, I. Chung and J. Hollingsworth Active Harmony: Towards Automated Perfor-

mance Tuning Supercomputing ’02: Proceedings of the 2002 ACM/IEEE conference on

Supercomputing 2002 , Pg 1–11

[25] V. Taylor, X. Wu, R. Stevens Prophesy: an infrastructure for performance analysis and

modeling of parallel and grid applications, SIGMETRICS Perform. Eval. Rev., volume

30, number 4, pages 13–18

[26] C. Terboven, D. Mey, S. Sarholz OpenMP on Multicore architectures. In IWOMP ’07:

Proceedings of the 3rd international workshop on OpenMP A Practical Programming

Model for the Multi-Core Era, Lecture Notes in Computer Science, Springer, Berlin Hei-

delberg, 54-64 (2008).

[27] H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz and others. MOLPRO,

version 2008.3, a package of ab initio programs

[28] E.H. White, F. Capra, W.D. McElroy. The Structure and Synthesis of Firefly Luciferin

J. Am. Chem. Soc., 83(10), 2402-2403(1961).

[29] N. Ustemirov, M. Sosonkina, M.S. Gordon and M.W. Schmidt Dynamic Algorithm Selec-

tion in Parallel GAMESS Calculations. ICPPW ’06: Proceedings of the 2006 International

Conference Workshops on Parallel Processing 2006, Pg 489–496

www.manaraa.com

45

[30] N. Ustemirov, M. Sosonkina, M.S. Gordon, M.W. Schmidt. Concurrent Execution of

Electronic Structure Calculations in SMP Environments. In Proceedings 2005 Spring

Simulation MultiConf, High Performance Computing Symposium, J.A.Hamilton Jr. et al,

Soc. for Modeling and Simulation Internat. , San Diego, CA. 2005

[31] N. Ustemirov, M. Sosonkina. Efficient Execution of Parallel Electronic Structure Calcu-

lations on SMP Clusters. Minnesota Supercomputing Institute Technical Report umsi-

2005-227, University of Minnesota, 2005.

[32] R. Vuduc, J.W. Demmel and J.A. Bilmes Statistical Models for Empirical Search-Based

Performance Tuning Int. J. High Perform. Comput. Appl., 2004, pg 65–94

[33] M.S. Wu, J.L. Bentz, F. Peng, M. Sosonkina, M.S. Gordon, R.A. Kendall Integrating Per-

formance Tools with Large-Scale Scientific Software. In Proceedings of IEEE International

Parallel and Distributed Processing Symposium, 2007. (IPDPS 2007). Pg 1–8

	2009
	Performance analysis and middleware assisted adaptation for quantum chemistry computations
	Lakshminarasimhan Seshagiri
	Recommended Citation

	tmp.1335711608.pdf.v0t3O

